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What is LLM?
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“The limits of my language mean the limits of my world”

Ludwig Wittgenstein

Ø Language is a prominent ability in human beings to express and communicate, while machines cannot 

naturally grasp the abilities of understanding and communicating in the form of human language, unless 

equipped with powerful artificial intelligence (AI) algorithms.

Ø Language modeling (LM) is one of the major approaches to advancing language intelligence of machines.

Ø LM can be divided into four major development stages: Statistical language models (SLM), Neural 

language models (NLM), Pre-trained language models (PLM), and Large language models (LLM).



Origin of LLM
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Ø Large-sized PLMs display different behaviors from smaller PLMs and show surprising abilities in solving a 

series of complex tasks

Ø The term “large language models (LLM)” has been coined for these large-sized PLMs, which contain hundreds 

of billions (or more) of parameters

Ø A sharp increase of the arXiv papers that are related to LLMs after the release of ChatGPT



From Language Modeling to Task Solving
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Ø LLMs are enhanced by exploring the scaling effect on model capacity, which can be considered as general-

purpose task solvers

Ø The task scope that can be solved by LMs have been greatly extended

Ø The task performance attained by LMs have been significantly enhanced

Zhao W X, Zhou K, Li J, et al. A survey of large language models[J]. arXiv preprint arXiv:2303.18223, 2023.



From LLMs to AGI
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Ø The advent of ChatGPT and GPT-4 leads to the 

rethinking of the possibilities of artificial general 

intelligence (AGI)

Ø The research areas of AI are being revolutionized by 

the rapid progress of LLMs



Early PLMs
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Ø Encoder-only PLMs

   ○   BERT and its variants 

Ø Decoder-only PLMs

   ○   GPT-1 and GPT-2

Ø  Encoder-Decoder PLMs

   ○   T5, mT5, MASS, BART 



LLM Families
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Ø Compared to PLMs reviewed above, LLMs are not only much larger in model size, but also exhibit stronger 

language understanding and generation and emergent abilities that are not present in smaller-scale models

 



GPT Family
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Ø  GPT-3: viewed as the first LLM, model parameters to 175B

Ø  CODEX: a general-purpose programming model

Ø  InstructGPT: align language models with user intent on a wide 

range of tasks by fine-tuning with human feedback

Ø  ChatGPT: superior capacities in communicating with humans

Ø GPT-4:  stronger capacities in solving complex tasks than GPT-3.5

Ø GPT-4V, GPT-4 turbo, and beyond: 

 extensively discussed the assessment 

and mitigation of risks related to visually 

augmented inputs



LLaMA Family
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Ø  LLaMA:  using the transformer architecture of GPT-3

Ø  LLaMA-2: including both foundation language models and Chat models fine-tuned for dialog



LLaMA Family (cont.)
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Ø Alpaca: using 52K instruction-following demonstrations generated in the style of self-instruct using GPT-3.5

Ø Vicuna: fine-tuning LLaMA on user-shared conversations collected from ShareGPT

Ø Guanaco, Koala: instruction-following language model built on LLaMA

Ø Mistral-7B: a 7B-parameter language model engineered for superior performance and efficiency



PaLM Family
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Ø PaLM:  a 540B parameter transformer-based LLM

Ø U-PaLM: the model of 8B, 62B, and 540B scales 

are continually trained on PaLM with UL2R

Ø Flan-PaLM: using a much larger number of tasks, 

larger model sizes, and chain-of-thought data

Ø PaLM-2:  a more compute-efficient LLM with better 

multilingual and reasoning capabilities, compared to 

its predecessor PaLM

Ø Med-PaLM:  provide high-quality answers to 

medical questions 

Ø Med-PaLM2:  improving upon Med-PaLM by over 

19%



Other Families
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Ø BLOOM:   A 176B-parameter open-access multilingual 

language model

Ø Claude Family: LLMs created by Anthropic

Ø Qwen Family: LLMs  created by Alibaba



Differences between LLMs and PLMs
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Ø LLMs display some surprising emergent abilities, are key to the performance of language models on complex 

tasks, making AI algorithms unprecedently powerful and effective.

Ø LLMs would revolutionize the way that humans develop and use AI algorithms, and the major approach to 

accessing LLMs is through the prompting interface (e.g., GPT-4 API).

Ø The development of LLMs no longer clearly distinguishes between research and engineering, and researchers 

have to solve complicated engineering issues, working with engineers or being engineers.



From LLMs to MLLMs
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Ø  Mult imodal  Large Language Models  (MLLMs) 

circumvent the computational cost of training from 

scratch by effectively leveraging the pre-training 

knowledge of each modality to enhance multimodal 

competencies

Ø MLLMs can process inputs from multiple modalities, 

significantly broadening their application scope

The architecture of a typical MLLM 

The timeline of efficient MLLMs



LLM-centered Multimodal Model Architectures
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Ø  Deep Fusion, wherein the fusion of modalities occurs 

within the internal layers of the model

 ○   Type-A: Standard Cross-Attention based Deep Fusion 

(SCDF)

 ○   Type-B: Custom Layer based Deep Fusion (CLDF)

Ø Early Fusion, characterized by the fusion of modalities at 

the model’s input

 ○   Type-C: Non-Tokenized Early Fusion (NTEF)

 ○   Type-D: Tokenized Early Fusion (TEF)



Standard Cross-Attention based Deep Fusion
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The input modalities are deeply fused into the 

internal layers of the LLM using standard cross-

attention layer

 ○   sub-type A.1: the cross-attention can be added 

either before  the self-attention layer

 ○   sub-type A.2: the cross-attention can be added 

either after the self-attention layer



Custom Layer based Deep Fusion
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Ø The input modalities are deeply fused into the 

internal layers of the LLM using custom-

designed layers

 ○   sub-type B.1: Custom Cross-Attention Layer  

 ○   sub-type B.2: Custom Learnable Layer



Non-Tokenized Early Fusion
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The (non-tokenized) input modalities are 

directly fed to the model at its input, rather than 

to its internal layers, resulting in early fusion

 ○   sub-type C.1 Linear Layer/MLP: models 

using only Linear Layer/MLP for connecting 

Encoder to the LLM (decoder)  

 ○   sub-type C.2: Q-former and Linear 

Layer/MLP: models using Q-former and Linear 

Layer/MLP for connecting Encoder to the LLM 

(decoder)

 ○   sub-type C.3: Perceiver Resampler: models using Perceiver resampler for connecting Encoder to the LLM (decoder) 

 ○   sub-type C.4: Custom Learnable layer: models using custom-module/layer for connecting Encoder to the LLM 

(decod



Tokenized Early Fusion
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 The multimodal inputs are tokenized using a 

common tokenizer or modality specific tokenizers

 ○   subtype D.1: Models using LLM

Models that primarily use LLM are LaVIT, TEAL, 

CM3Leon, SEED, Unicode, VL-GPT

 ○   subtype D.2: Models using Encoder-Decoder 

style Transformer

Models using encoder-decoder style transformer 

instead of LLM are Unified-IO, Unified-IO 2 and 

4M



Next Generation Multimodal Architectures
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Ø Any-to-any Multimodal Model：

multimodal models with 

multimodal-input and multimodal-

output

○   Multimodal output generation is 

one of the primary challenge

 ○   Type-C and Type-D multimodal 

architectures are at the forefront of 

development for any-to-any 

multimodal models

Any-to-any Multimodal Model development timeline



How to utilize LLMs
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Major Aspects for LLMs Optimization
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Pre-Training -- how to pre-train a capable LLM0 1

Adaptation -- how to effectively adapt pre-trained LLMs for better 

use

0 2

Utilization -- how to use LLMs for solving various downstream 

tasks

0 3

Capability evaluation -- how to evaluate the abilities of LLMs and 

existing empirical findings
0 4



Pre-training
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Goal: acquire essential 

language understanding and 

generation skills

 Key Elements:  model 

architectures, acceleration 

methods, and optimization 

techniques

Too Expensive!



Data for Pretraining
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• High-quality data is vital to model capacities of LLMs

Ø Data Source

   ○   General Text Data 

  •  Webpages

  •  Conversation text

  •  Books

   ○   Specialized Text Data

  •  Conversation text

  •  Scientific text

  •  Code
Ratios of various data sources in the pre-training data for existing LLMs



Data Preparing for Pretraining
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Ø Data Scheduling

○   Data Mixture

•  Increasing the diversity of data sources

•  Optimizing data mixtures

•  Specializing the targeted abilities

○   Data Curriculum

•  aims to organize different parts of pre-

training data for LLMs in a specific order



Architectures for Pretraining

Ø Typical Architectures

○   Encoder-decoder Architecture consists 

of two stacks of Transformer blocks 

○   Causal Decoder Architecture 

incorporates the unidirectional attention mask

○   Prefix Decoder Architecture 

incorporates the unidirectional attention masks



New Architectures for Pretraining
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Ø Extended Architectures

○   Mixture-of-Experts (MoE) is a flexible way 

to scale up the model parameter

○   Emergent Architectures

    •  new architectures: parameterized state space models,  long convolutions,  and Transformer-like architectures

    • decoding process more efficient

    •  models to be trained in a highly parallel and efficient manner



Pretraining Change: Normalization Position
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Ø Normalization Position

○   To alleviate the issue of training instability

○   techniques: LayerNorm, RMSNorm, DeepNorm

Weight matrix 
re-scaling

Weight matrix 
re-centering

Weight vector 
re-scaling

Dataset 
re-scaling

Dataset 
re-centering

Single training 
case re-scaling

BatchNorm ✓ ✗ ✓ ✓ ✓ ✗

WeightNorm ✓ ✗ ✓ ✗ ✗ ✗

LayerNorm ✓ ✓ ✗ ✓ ✗ ✓

RMSNorm ✓ ✗ ✗ ✓ ✗ ✓

ρRMSNorm ✓ ✗ ✗ ✓ ✗ ✓

The loss surface of 36-layer vanilla Post-LN and 
DEEPNET at the early stage of training.



Pretraining Change: Normalization Position
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Ø Normalization Position

○   Post-LN: being instable

○   Pre-LN: being more stable in training but 

performing worse than variants with Post-LN

○   Sandwich-LN: to avoid the value explosion 

issues in Transformer layer outputs



Pretraining Change: Position Embeddings
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Ø Position Information

○   Absolute position embedding

○   Relative position embedding

○   Rotary Position Embedding (RoPE)

○   ALiBi    

ALiBi
RoPE

relative PE



 Pretraining Change: Attention

Ø Full attention

Ø Sparse attention

Ø Multi-query / grouped-query attention

Ø FlashAttention 

Ø PagedAttention   

PagedAttention



Pretraining Change:  In-Context Modeling 

Ø Language Modeling (LM) 

Ø Denoising Autoencoding (DAE)

Ø Mixture-of-Denoisers (MoD)

DAE (T5) MoD for training UL2

Examples of LM (PaLM)



Pretraining Change: Long Context 
Understanding
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Ø Scaling Posit ion Embeddings

   ○    D i re c t  m o d e l  f i n e - t u n i n g  - -   t o  d i r e c t l y  f i n e - t u n e  t h e  m o d e l s  o n  l o n g  t e x t s  w i t h  t h e  
des i red length

   ○    Pos i t ion  in t e rpo la t ion  - -  downsca l e s  t he  pos i t i on  ind ices  w i th in  t he  o r ig ina l  con tex t  
window

   ○    Pos i t ion  t runcat ion  - -  to  mi t iga te  the  cha l lenges  posed  by  ou t -of -d i s t r ibu t ion  ro ta t ion 
angles

   ○    Base  modi f i ca t ion  - -  dec reas ing  the  bas i s  can  be  ach ieved  by  inc reas ing  the  va lue  o f  
the  base

   ○    Bas i s  t runca t ion  - -  dea l ing  wi th  the  s ingu la r  d imens ions  wi th  wave leng ths  exceed ing 
the  t ra ining length



Pretraining Change: Long Context 
Understanding (cont.)
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External  memory (Unl imiformer)

Ø Adapt ing Context  Window

l  Paral le l  context  window 

l  Λ-shaped context  window 

l  External  memory



Pretraining Change: Decoding Strategy
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copious  repet i t ion (highl ighted in  blue)
incoherence (highl ighted in  red)

Ø Background

○   greedy search

○   sampling-based methods

Ø Improvement for Greedy Search
○   Beam search

○   Length penalty

Ø Improvement for Random Sampling

○   Temperature sampling

○   Top-k sampling

○   Top-p sampling

○   η-sampling



Pretraining Change: Decoding Strategy 
(cont.)
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Ø Decoding Efficiency Issues

   ○    the  pref i l l  s tage

   ○    the  incremental  decoding  s tage

• Reducing data transfer - - - -  optimizing GPU 

memory access

      △  KV cache、Flash-Decoding、

PagedAttention、 MQA、GQA

• Decoding strategy optimization - - - -  improve 

the sequential nature of the auto regressive 

generation manner

     △  speculative decoding



Pretraining Change: Scalable Training 
Techniques
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3D Para l l e l i sm  

Mixed Precision Training 

ZeRO 

Ø Primary technical issues

 ○   increas ing t ra ining throughput

 ○   loading larger  models  in to  GPU 
memory

Ø Approaches

  ○   3D Paral le l ism

  ○   ZeRO

  ○   Mixed Precision Training



Adaptation: Instruction Tuning 

41



Adaptation: Instruction Tuning (cont.)
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Formatt ing NLP Task Datasets, Formatt ing Daily Chat Data, Formatt ing Synthetic Data



Adaptation: Instruction Tuning (cont.)
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General pipeline of distillation for 
synthetic data generation

General pipeline of self-improvement for synthetic data generation

Pipeline Distillation from ChatGPT

General pipeline of self-improvement for 
synthetic data generation



Adaptation: Instruction Tuning (cont.)
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ØSome findings from our practice
ü Task-formatted instructions are more proper for the QA 

sett ing, but may not be useful for the chat sett ing

ü A mixture of different kinds of instructions are helpful 
to improve the comprehensive abil i t ies of LLMs

ü Enhancing the complexity and diversity of instructions 
leads to an improved model performance

ü Simply increasing the number of instructions may not 
be that useful,  and balancing the difficulty is not 
always helpful

ü A larger model scale leads to a better instruction 
following performance Examples of Enhancing the instruction complexity 

(Evol-Instruct)



Adaptation: Parameter-Efficient Fintuning
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a b

Prompt Tuning

c d

Pref ix TuningAdapter Tuning Low-Rank Adapt ion

Ø   Parameter-Eff icient Fine-Tuning (PEFT) Methods  



Adaptation: Parameter-Efficient Fintuning
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Ø   Adapter Tuning: incorporate small  neural 

network modules (i .e. ,  adapter) into the 

Transformer models 

○    bottleneck architecture, parallel adapters

bottleneck architecture(Long et al. 
2022)



Adaptation: Parameter-Efficient Fintuning
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Fine-tuning  vs. Pref ix-
tuning

P-tuning vs. P-tuning v2

Ø   Pref ix Tuning:  prepends a  sequence of  pref ixes 

(v i r tua l  token embeddings)  to  each  Transformer 

layer 

○    Prefix-tuning, P-tuning v2



Adaptation: Parameter-Efficient Fintuning
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Ø   Prompt Tuning: incorporate trainable prompt vectors 

at  the input layer 

○    discrete prompting methods, prompt tuning, P-tuning, 



Adaptation: Parameter-Efficient Fintuning
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Ø   Low-Rank Adaptation (LoRA): impose the low-rank 

constraint for approximating the update matrix at 

each dense layer 

○   LoRA, DyLoRA, DyLoRA
LoRA



Adaptation: Alignment Tuning (w/ RLHF)
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An example of the three steps of RLHF System (Long et  a l .  2022)



Adaptation: Alignment Tuning (w/ RLHF)
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       Key Steps for RLHF 

●    Supervised fine-tuning

●    Reward model training

●    RL fine-tuning

Ø  Keep tedious and memory consuming

Ø RLHF is rather complex and often sensitive to 

hyper-parameters



Adaptation: Alignment Tuning (w/o RLHF)
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Ø Alignment Data Collection  

○    Reward model based approaches (RAFT, Quark, ILF)

Quark

ILF



Adaptation: Alignment Tuning (w/o RLHF)
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Ø   Alignment Data Collection  

○    LLM based generative approaches (CAI,  Self-

Align, FIGA)

CAI

Self-Align

FIGA



Adaptation: Alignment Tuning (w/o RLHF)
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Ø   Supervised Alignment Tuning  

○    Primary training objective -- the traditional cross-entropy loss for sequence-to-sequence 

learning

• CoH, Quark, DPO, FIGA

CoH DPO



Adaptation: Memory Efficient Adaptation
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Ø   What is quantization: the mapping process from floating-point numbers to integers,  

especially INT8 quantization   

○   What to Quantize: weights (model parameters) and activations (hidden activations)

○  Quantization Operator: Uniform Quantization, non-uniform quantization (whether quantized values (aka 

quantization levels) are uniformly spaced)

Comparison between uniform quantization (left) and non-uniform quantization (right)



Adaptation: Memory Efficient Adaptation
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   ○   How to choose  the scaling factor  in uniform quantization 

-- Symmetric Quantization:  partitions the clipping using a symmetric range,  easier implementation, but it is 

sub-optimal for cases where the range could be skewed and not symmetric

-- Asymmetric Quantization

Illustration of symmetric quantization and asymmetric quantization



Adaptation: Memory Efficient Adaptation
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  ○   Quantization Granularity 

-- Layerwise Quantization:  the clipping range is 

determined by considering all of the weights in 

convolutional filters of a layer

-- Asymmetric Quantization: the clipping range is 

determined by considering all of the weights in 

convolutional filters of a layer

Illustration of different quantization granularities



Adaptation: Memory Efficient Adaptation
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Ø   Range Calibration Algorithms: Static Quantization  vs.  Dynamic Quantization

--   two approaches to quantizing activations

Static Quantization

l the clipping range is pre-calculated and static 
during inference

l does not add any computational overhead but 
results in lower accuracy

Dynamic Quantization

l  this range is dynamically calculated for each 
activation map during runtime

l has a very high overhead but results in higher 
accuracy 



Adaptation: Memory Efficient Adaptation
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Ø  quantization-aware training (QAT)  --  requiring additional full  model retraining

Ø  Post-Training Quantization (PTQ)  --  requiring no model retraining 

○   PTQ methods keep a much lower computational cost than QAT methods

Comparison between QAT ( Left) and PTQ (Right)



Quantization-aware Training
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Ø  QAT --  the model parameters are quantized after each gradient update

  ○   categories 

   -- Straight Through Estimator (STE) methods

    --  Non-STE methods

   ○   disadvantage

   -- the computational cost of re-training the 

NN model

Illustration of QAT procedure, including the use of STE



Post-Training Quantization
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Ø Mixed-Precision Decomposition -- to recover the outliers in hidden 
activations 

Ø Fine-Grained Quantization -- to reduce the quantization error

Ø Balancing the Quantization Difficulty -- to consider weights being 
easier to be quantized than activations

Ø Layerwise Quantization -- to find optimal quantized weights that 
minimize a layerwise reconstruction loss



Other Quantization Methods
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QLoRA:  Efficient fine-tuning 

enhanced quantization 

overcome this challenge, which directs 

low-bit quantization (e.g., INT4 

quantization) often results in large 

performance degradation 



Experience for Memory-Efficient Model 
Adaptation

63

ü INT8 weight  quantizat ion can often yield very good resul ts  on 
LLMs, while the performance of lower precision weight

ü Activations are more difficult to be quantized than weights

ü Efficient f ine-tuning enhanced quantization is  a good option to 
enhance the performance of quantized LLMs



LLM Utilization

64

Ø  How to use LLMs -- design suitable prompting strategies for solving various 

tasks

  ○   prompting methods

   --  in-context learning

    --  chain-of-thought prompting

    --  planning

 



Prompt Engineering
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Ø   Prompt Engineering -- the process of manually creating a suitable 
prompt

Ø   Key Ingredients: Task description, Input data, Contextual information, 
Prompt style

 

Example instructions. The blue text denotes the task description, the red 
text denotes the contextual information, the green text denotes the 
demonstrations, and the gold text denotes the prompt style.



Prompt Engineering (cont.)
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Ø   Prompt Design Principles

①   Expressing the task goal clearly

②  Decomposing into easy, detailed 

sub-tasks

③  Providing few-shot 

demonstrations

④  Utilizing model-friendly format
Examples of useful tips



Prompt Engineering (cont.)
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Ø   Some Experience

ü Carefully designed prompts can boost the zero-shot or few-shot 
performance

ü M o r e  c o m p l e x  t a s k s  c a n  b e n e f i t  m o r e  f r o m  c a r e f u l  p r o m p t 
engineering

ü For mathematical reasoning tasks, i t  is more effective to design 
specific prompts based on the format of programming language

ü Through sui table  prompt  engineer ing,  LLMs can handle  some 
non-traditional NLP tasks



Prompt Optimization
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Ø   Discrete Prompt Optimization: the form is simple and flexible, but it has 

the combinatorial huge search space

• Gradient-based approaches -- to maximize the output likelihood via 

gradient update

• RL-based approaches --  to formulate the discrete promptoptimization 

as RL problem

• Edit-based approaches --  to directly edit existing prompts based on 

the task performance

• LLM-based approaches -- to directly leverage LLMs as prompt 

generator



Prompt Optimization (cont.)
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Ø   Continuous Prompt Optimization: can be directly optimized through the 

gradient update based on the loss of downstream tasks

• Prompt learning with sufficient data -- leverage supervised learning to 

optimize the continuous prompts by minimizing the cross-entropy loss 

based on sufficient downstream task data

• Prompt transferring with scarce data -- to work well in data-scarce 

domains and tasks 
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An example of in-context learning

Ø   In-Context Learning (ICL) requires 

a formatted prompt context 

containing the task description 

and/or a few task examples as 

demonstrations written in natural 

language templates. Taking this 

prompt and a query as the input, 

LLMs are responsible for making 

predictions.
An example of in-context learning

In-Context Learning



71

A comparative illustration of ICL and chain-of-thought (CoT) prompting

Ø   Based on task demonstrat ions, LLMs can recognize and perform a new task without 

expl ici t  gradient update

ICL Formulation
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Ø   Major Aspects 

 --  Demonstration Selection -- to select a subset of examples that can effectively leverage the 

ICL capability of LLMs

○   Heuristic approaches -- simplicity and low costs

○   LLM-based approaches --  making use of LLMs 

Demonstration Design
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Auto-CoT -- 
demonstrations (on the 
right) are automatically 
constructed one by one 
(total: k) using an LLM with 
the “Let’s think step by 
step” prompt

Ø   major aspects 

 --  Demonstration Format -- to integrate and 

format  selected task examples into a natural 

language prompt for LLMs

○   straightforward method -- to instantiate 

a pre-defined template with the corresponding 

input-output pairs

○   how to automatically generate high-

qual i ty ones --  Auto-CoT,  least- to-most 

prompting 

 

least-to-most prompting solving a 
math word problem in two stages

Demonstration Design (cont.)
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probing set construction method (Lu et al. 2022), showing the various 
possible ordering permutations of the randomly selected training 
samples, the resulting generation for each permutation, and the 

concatenation of each into a probing set

Ø   Demonstration Order -- to alleviate the recency bias, (i.e.,  repeat answers that are near 

the end of demonstrations)

○   several heuristic methods

○   to integrate more task information -- minimize the code length required to compress 

and transmit task labels 

Training sample permutations for the In-context 
Learning setting

Demonstration Design (cont.)
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Ø   How Pre-Training Affects ICL?  -- making 

models learn to reason across demonstrations

PICL  (Gu et al., 2023)

MEND (Li et al., 2024)

ICLM (Shi et al., 2024)

Underlying Mechanism in ICL



76

Ø   How LLMs Perform ICL? 

 -- based on given demonstrations at the 

inference stage (two main ways for LLMs to utilize 

demonstrations)

Task recognition: LLMs recognize the task from 

demonstrations and utilize the prior knowledge 

obtained from pre-training to solve new test tasks

Task learning: LLMs learn new tasks unseen in 

the pre-training stage only through demonstrations
three experimental settings (Pan et al., 2024)

• models can achieve non-trivial performance with only TR, 
and TR does not further improve with larger models or more 
demonstrations

• LLMs acquire TL as the model scales, and TL’s performance 
consistently improves with more demonstrations in context

Underlying Mechanism in ICL (cont.)
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Ø   Pre-training Stage 

○   pre-training corpora, data distribution, model architecture and training process

Ø    Inference Stage

○    input-label settings,  demonstration,  demonstration-query

Summary of factors that have a relatively strong correlation to ICL performance and different perspectives to explain why ICL works

Influencing Factors in ICL
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Ø C h a i n - o f - T h o u g h t  ( C o T )  r e a s o n i n g  o f f e r s  a  s t e p - b y - s t e p  r e a s o n i n g  t r a j e c t o r y,  i t  

decomposes  in t r ica te  problems in to  manageable  s teps  ( thoughts ) ,  s impl i fy ing the  overa l l  

reasoning  process ,  and  crea tes  a  l inkage  (chain )  among the  reasoning  s teps  to  ensure  no 

i m p o r t a n t  c o n d i t i o n s  a r e  o v e r l o o k e d .   C o T r e a s o n i n g  o f f e r s  a n  o b s e r v a b l e  r e a s o n i n g 

process

CoT Prompting in ICL
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Ø CoT prompt ing i s  an  improved prompt ing  s t ra tegy  to  boos t  the  per fo rmance o f  LLMs on 

comp lex  reason ing  tasks .  I ns tead  o f  s im p l y  cons t ruc t i ng  t he  p rom p ts  w i t h  i npu t -ou tpu t  

pa i r s  l i ke  ICL ,  CoT p rompt ing  fu r the r  i nco rpo ra tes  i n te rmed ia te  reason ing  s teps ,  wh ich 

serve as the br idge between inputs and outputs

A comparative illustration of ICL and chain-of-thought (CoT) prompting

CoT Prompting in ICL
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Ø CoT prompt ing is f i rs t  proposed 

as an extension of  ICL,  <input,  

output> to <input,  CoT, output>

Ø A CoT is a ser ies of  intermediate 

reasoning steps

An illustration of the evolution of CoT prompting strategies. Here, “thought” refers to an 
intermediate reasoning step

Basic CoT Prompting Approach
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Ø Chain Structure:  the descr ipt ion 

format of  rat ionales s igni f icant ly 

inf luences reasoning execut ion

Ø Tree Structure:  gain the 

capabi l i ty  to widely explore and 

backtrack dur ing reasoning

Ø Graph Structure:  outperform 

tree-based methods in handl ing 

complex problems but  has 

poorer general izat ion
Topological variants emerging in the evolution of CoT. (a) standard I-O prompting, (b) parallel-

constrained tree structure variants, (c) chain structure variants with distinct rationale descriptions, (d) 
chain structure variants with self-ensemble, (e) standard tree structure variants, and (f) standard graph 

structure variants.

CoT Topological Variants
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Ø Verify and Refine
○   can be an effect ive strategy for  

mit igat ing fa i thfu l  errors in reasoning 

○    R e a s o n i n g  c a n  b e  r e f i n e d 

b a s e d  o n  c r i t i c a l  f e e d b a c k  p r o v i d e d 

by LLMs

○   l o g i c a l  r e a s o n i n g  s t r u c t u r e s 

are also wel l -sui ted for  ver i f icat ion

Verification and refinement rectify intermediate errors, which reduce cascading errors in reasoning

CoT Enhancement Methods
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Ø Question Decomposit ion
○   address intr icate problems by 

progressively tackl ing stra ight forward 

sub-problems 

○   i nvo lve  decompos ing  bo th  the 

ques t ions  and  tab les  s imu l taneous l y 

when deal ing wi th tabular  reasoning

○   Bo t tom-up  aggrega t ion  i s  a lso 

a  v i a b l e  s o l u t i o n ,  w i t h  a  s m a l l e r  

explorat ion space

Question decomposition solves complex questions progressively by solving simple sub-questions

CoT Enhancement Methods (cont.)
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Ø Knowledge Enhancement
○   I n t roduc ing  ex te rna l  know ledge  o r 

mining the model ’s internal  knowledge can 

h e l p  d e a l i n g  w i t h  k n o w l e d g e - s e n s i t i v e 

tasks

○   External  knowledge is of ten more 

re l iable than parametr ic knowledge

○   B o t t o m - u p  a g g r e g a t i o n  i s  a l s o  a 

v iab le  so lu t ion ,  w i th  a  smal le r  exp lora t ion 

space

Incorporating knowledge (either internal or external) helps mitigate factual errors in reasoning

CoT Enhancement Methods (cont.)



85

Ø Self-Ensemble
○  The  sampl ing  dur ing  genera t ion 

i n t roduces  unce r ta in t y,  wh i ch  i n  t u rn ,  

c r e a t e s  t h e  p o s s i b i l i t y  o f  i m p r o v i n g 

performance through sel f -ensemble 

○  answer -based ensemble  fa i l s  to 

consider intermediate steps

○  another concern is the limited diversity 

offered by probability sampling

Self-ensemble reduces inconsistency by selecting final answers from multiple samplings

CoT Enhancement Methods (cont.)
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○  S i n c e  C o T  r e a s o n i n g  i s  a n  e m e r g e n t  a b i l i t y,  i t  o n l y  h a s  a  p o s i t i v e  e f f e c t  o n 

suff i c ien t ly  la rge models  ( typ ica l ly  conta in ing  10B or  more  parameters )  bu t  no t  on 

small  models 

○  Since CoT prompting augments the standard prompting with intermediate reasoning 

s teps,  i t  i s  main ly  e ffec t ive  for  the tasks that  requ i re  s tep-by-s tep reason ing,  e .g . , 

ari thmetic reasoning, commonsense reasoning, and symbolic reasoning

○  For other tasks that do not rely on complex reasoning, CoT prompting might lead to worse 

performance than standard prompting

When CoT Prompting Works For LLMs?
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Ø Prompt-based Planning has been proposed 

to break down complex tasks into smaller 

sub-tasks and generate a plan of act ions to 

accomplish the task

Ø typical ly three components  

○  task planner: generating the whole plan to solve 

a target task

○  plan executor: executing the actions in the plan

○  environment: where the plan executor carries 

out the actions, which can b e  s e t  d i f f e r e n t l y 

according to specif ic tasks  An illustration of the formulation for prompt based planning 
by LLMs for solving complex tasks

Prompt-based Planning (Early Agent)
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Ø   Retr ieval-Augmented Generation 

(RAG)  incorporates information or 

knowledge from external data sources, 

which serves as supplementary for the 

input query or the generated output to 

advance generation models and 

enhance the generated results  

RAG meets LLMs. When the user’s query is out-of-scope, e.g., 
unseen content in training data or the need for the latest 
information for the answer, LLMs might shown ferior generation 
performance. With the help of RAG, LLMs can leverage additional 
relevant information from external database to enhance their text 
generation capability

Retrieval-Augmented Generation
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Ø  RAG f i rst  invokes the retr iever to 

search and extract  the re levant 

documents f rom external  databases,  

which are leveraged as the context  

to enhance the generat ion process  

Ø RAG is feasib le and eff ic ient  to 

apply in var ious generat ion tasks 

wi th s imple adaptat ion of  the 

retr ieval  component

Ø great  potent ia l  of  RAG not only for  

knowledge- intensive tasks but  a lso 

for  general  language tasks,  and 

var ious downstream appl icat ions : Representing RAG and RA-LLMs methods organized by their main design focus, 
proposed time and impact

Retrieval-Augmented Generation (cont.)
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Ø   major processes

○ retrieval 

○ generation 

○ augmentation

○ the mechanism to 

determine whether 

the retrieval is needed  

Illustration of the basic Retrieval-Augmented Large Language Models (RA-LLMs) framework for a specific QA 
task, which consists of three main components: retrieval, augmentation, and generation. Retrieval may have 
different procedures with various designs, which optionally includes pre-retrieval and post-retrieval processes. 
The retrieved documents are further leveraged in generation with the augmentation module, which may be at 
different integration stages

RAG Framework
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Ø   Retr iever Type

  ○ sparse retrieval -- word-based and applied in text retrieval mostly 

  ○ dense retrieval -- embedding queries and external knowledge into 

vector spaces and can applied to various data formats

Ø Retrieval Granularity

-- denotes the retrieval unit in which the corpus is indexed

  ○ Chunk retrieval -- is common, which has been used in both 

traditional and LLM-based RAG models such as REALM, RAG and 

Atlas

  ○ token retrieval -- instead can be done with faster searching but will 

bring more burden for the database saving

  ○ entity retrieval -- designed from the perspective of knowledge 

rather than language

 I l lustration of the retriever in RA-LLMs, which can be 
implemented in either dense or sparse manners, each with 
several key operations

Retrieval in RAG
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Ø   Pre-retr ieval  and Post-retr ieval  Enhancement

 -- to ensure the retrieval quality, i.e., increase the accuracy and relevance of the retrieved results 

  

Retrieval in RAG (cont.)
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Ø  The design of the generator heavi ly depends on the downstream tasks

  ○  Parameter-Accessible Generators (White-box) 

-- word-based and applied in text retrieval mostly 

-- allow parameter optimization, which can be trained to adapt to different retrieval and 

augmentation approaches for a better performance of generation

  ○ Parameter-Inaccessible Generators (Black-box) 

--  only allow the operations of feeding queries (input) and receiving responses (output) while not 

allowing the internal structure to be altered or parameters to be updated

--  Black-box RA-LLMs focus more on the retr ieval and augmentation processes, 

trying to enhance the generator by augmenting the input (also cal led prompt in the 

context of LLMs) with better knowledge, guidance, or examples for the generation

Generation in RAG
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Ø  Retrieval Integration for Generation Augmentation
  ○  Input-Layer Integration 

-- to integrate retrieved information/documents is to combine them with the original 

input/query and jointly pass them to the generator

  ○  Output-Layer Integration

--  it’s post-hoc, which joints retrieval and generation results

  ○  Intermediate-Layer Integration

--  to design a semi-parametric module to integrate the retrieved results 

through the internal layers of the generation model, which is called 

intermediate-layer integration

Augmentation in RAG
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Ø  Retrieval Augmentation Necessity and Frequency

  ○   it is critical for RA-LLMs to accurately recall the prior knowledge while selectively 

incorporating retrieved information only when necessary

  ○  Retrieval frequency affects both the efficiency and effectiveness of the model

--  one time

--  every-n-token

--  every token  

Augmentation in RAG (cont.)
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Ø Training-free   

Ø Training-based

  ○   Independent Training

  ○   Sequential Training

  ○   Joint Training

An illustration of different training methods in RA-LLMs. Existing RA-LLMs approaches can be categorized into two classes: training-free 
approaches usually directly leverage retrieved information during the inference time by integrating the retrieved knowledge into the 
prompt, and training-based approaches fine-tune the retrieval and generator to enhance the generation performance. Based on the 
training strategies, training-based methods can be further categorized into three groups: independent training, where the retrieval and 
generator components are trained independently; sequential training, where they are trained sequentially; and joint training, where they 
are trained jointly

Retrieval Augmented LLMs (RA-LLMs)
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Ø NLP applications   

Ø Downstream tasks

Ø Domain-specific applications

RAG Applications
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Ø  Trustworthy RA-LLMs

--  1) robustness, 2) fairness, 3) explainability, and 4) 

privacy

Ø  Multi-Lingual RA-LLMs

Ø  Multi-modal RA-LLMs

Ø  Quality of External Knowledge

RAG Challenges and Futures
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Ø  More generally, an LLM can access any number of external tools (e.g. an 

API to a service) to augment its functionality  

ØRAG can be seen as a specific instance of the broader category of the so 

called ”tools”

ØThese tools extend the range of tasks an LLM can perform, from basic 

information retrieval to complex interactions with external databases 

or APIs

“Sharp tools make good work”
—The Analects: Wei Ling Gong

External Tools Use
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Ø  the past year has 

witnessed a rapid surge in 

research efforts on tool 

learning concurrent with 

the rise of LLMs

An illustration of the development trajectory of tool learning

External Tools Use (cont.)



101

Ø  Knowledge Acquisition  

Ø  Expertise Enhancement

Ø  Automation and Efficiency

Ø  Interaction Enhancement

Ø  Enhanced Interpretability and User Trust

Why Tool Learning?
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Ø  Four Stages of Tool Learning  

○  Task Planning

○  Tool Selection

○  Tool Call ing

○  Response Generation

How Tool Learning?
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Ø  Task Planning  
○   conduct a comprehensive analysis of the 

user intent

○  the planner is also tasked with 

delineating the dependencies and execution 

sequence of the decomposed tasks

○  facil i tating the establishment of 

interconnections between the sub-questions

○  Tuning-free Methods and Tuning-based 

Methods

How Tool Learning? (cont.)
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Ø  Tool Selection  

○   involves choosing through a retr iever or direct ly 

al lowing LLMs to pick from a provided l ist of tools

 ○  Retr iever-based Tool Selection  

--   Term-based Methods and Semantic-based 

Methods

○  LLM-based Tool Selection

--   Tuning-free Methods and Tuning-based Methods

How Tool Learning?  (cont.)
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Ø  Tool Calling

○   extract the required parameters from the 

user query in accordance with the 

specif icat ions outl ined in the tool descript ion 

and request data from tool servers

○   Tuning-free Methods and Tuning-based 

Methods

How Tool Learning?  (cont.)
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Ø  Response Generation

○   synthesize information relevant to 

user queries and integrate their own 

knowledge to construct comprehensive 

responses

○   Direct Insertion Methods and 

Information Integration Methods

How Tool Learning?  (cont.)
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Ø  Two Paradigms of Tool Learning  

○  Tool Learning with One-step 

Task Solving

○  Tool Learning with I terat ive 

Task Solving

How Tool Learning?  (cont.)
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Ø  High Latency in Tool Learning

Ø  Rigorous and Comprehensive Evaluation

Ø  Comprehensive and Accessible Tools

Ø  Safe and Robust Tool Learning

Ø  Unified Tool Learning Framework

Ø  Real-Word Benchmark for Tool Learning

Ø  Tool Learning with Multi-Modal

Tools Learning Chanllenges and Future
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Ø   Basic Abil i ty

Ø   Knowledge Uti l izat ion

Ø   Complex Reasoning 

LLM Evaluation
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Ø   Language Generation (categories)

○  Language Modeling --  to predict the next token based on the previous tokens

○  Condit ional Text Generation --  generating texts satisfying specif ic task demands

based on the given condit ions, typical ly including machine translat ion, text 

summarization, and question answering

○  Code Synthesis  -- to generate formal language, especially computer programs (i.e., code) that 

satisfy specific conditions

LLM Evaluation: Basic Ability
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Ø   Language Generation (major issues)

○  Unreliable generation evaluation -- pronounced 

inconsistency between human evaluation and 

automatic reference-based metrics

○  Underperforming special ized generation --   

LLM’s proficiency in generation might be 

constrained when dealing with a special ized 

domain or task

LLM Evaluation: Basic Ability
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Ø    Knowledge Uti l izat ion (categories)

○  Closed-Book QA -- test the acquired factual knowledge of LLMs from the pre-

training corpus, where LLMs should answer the question only based on the given 

context without using external resources

○  Condit ional Text Generation --  LLMs can extract useful evidence from the external

knowledge base or document col lect ions, and then answer the question based on the 

extracted evidence

○  Knowledge Completion  -- LLMs might be (to some extent) considered as a knowledge base, which 

can be leveraged to complete or predict the missing parts of knowledge units

LLM Evaluation: Basic Ability
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Ø   Knowledge Uti l izat ion (major issues)

○  Hallucination --  the generated information is either in 

confl ict with the exist ing source ( intr insic hal lucination) 

or cannot be verif ied by the avai lable source (extr insic 

hal lucination)

LLM Evaluation: Knowledge Utilization
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Ø   Knowledge Uti l izat ion (major issues)

○  Knowledge recency --    LLMs would 

encounter diff icult ies when solving tasks 

that require the latest knowledge beyond 

the training data

LLM Evaluation: Knowledge Utilization
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Ø   Complex Reasoning (categories)

-- the abi l i ty of understanding and uti l izing support ing evidence or logic to derive 

conclusions or make decisions

○  Knowledge Reasoning -- to rely on logical relat ions and evidence about factual

knowledge to answer the given question

○  Symbolic Reasoning -- to manipulate the symbols in a formal rule sett ing to fulf i l l  

some specif ic goal, where the operations and rules may have never been seen by 

LLMs during pre-training

○  Mathematical Reasoning  --  to comprehensively utilize mathematical knowledge, logic, and 

computation for solving problems or generating proof statements

LLM Evaluation: Complex Reasoning
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Ø   Complex Reasoning (major issues)

○  Reasoning inconsistency - -  LLMs may generate 

the correct  answer fo l lowing an inval id reasoning path,  

or  produce a wrong answer af ter  a correct  reasoning 

process,  leading to inconsistency between the der ived 

answer and the reasoning process

○  Numerical computation  - -  face di ff icul t ies in the 

involved numerical  computat ion,  especial ly  for  the 

symbols that  are seldom encountered dur ing pre-

t ra in ing,  such as ar i thmet ic wi th large numbers

LLM Evaluation: Complex Reasoning
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Ø   Human Alignment

  -- LLMs could well conform to human values and needs, i.e., human 

alignment

Ø  Interaction with External Environment

  --  to receive feedback from the external environment and perform actions 

according to the behavior instruction

Ø Tool Manipulation

  -- LLMs can turn to external tools if they determine it is necessary to 

enhance the performance of LLMs on several specific tasks

LLM Evaluation: Advanced Ability
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Ø   Comprehensive Evaluation Benchmarks

○  MMLU -- a versati le benchmark for large-scale evaluation of multi-task 

knowledge understanding

○  BIG-bench --  a collaborative benchmark intended to probe existing LLMs 

from various aspects

○  HELM  --  a comprehensive benchmark that currently implements a core set of 16 

scenarios and 7 categories of metrics

○  Human-level test benchmarks  --  evaluate the comprehensive ability of LLMs with 

questions designed for testing humans

LLM Benchmarks
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 As LLMs have revolutionized the way how we develop AI algorithms, it poses 

significant impact on the research community

LLM Applications
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Ø   Model training

Ø   Inference

Illustration of model performance and model training time 
in GPU hours of LLaMA models at different scales

: Performance score vs. inference throughput for various LLMs. The throughputs 
are measured on Nvidia A100 80GB GPU with 16-bit floating point quantization.

Substantial Resource Demands in LLMs
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Perspectives:

Ømodel-centric

Ødata-centric

Ø framework-centric 

LLMs Optimization Perspectives
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Ø   Model-Centric Methods -- focus on both algorithm-level and system-level eff icient 

techniques where the model i tself  is the focal point

Ø  Categories 

○  Model Compression

○  Eff icient Pre-Training

○  Eff icient Fine-Tuning

○  Eff icient Inference

○  Eff icient Architecture

Model-Centric Methods
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Ø   Model Compression -- reducing the sizes and the amount of ari thmetic operations 

of LLMs

Model Compression
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Ø   Quant izat ion

Ø   Parameter Pruning

   ○  Structured Pruning --  pruning structured patterns

    ○  Unstructured Pruning -- pruning model weights individually

Ø   Low-Rank Approximat ion --   approximat ing the 

LLM weight  matr ix  wi th smal ler  low-rank matr ices

Ø   Knowledge Dist i l la t ion

    ○  White-Box Knowledge Dist i l la t ion --  the 

parameters or  logi ts of  the teacher LLM are used in 

the dist i l la t ion process

    ○  Black-Box Knowledge Dist i l la t ion --   only the 

outputs generated f rom the teacher LLM are used in 

the dist i l la t ion process Illustrations of model compression techniques for LLMs

Model Compression (cont.)
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Ø   Eff icient pre-training -- reducing the costs of the LLM pre-training process in terms 

of compute resources, training t ime, memory and energy consumption

Efficient Pre-Training
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Ø   Mixed Precision Training

Ø   Scal ing Models

Ø   Initialization Techniques

Ø   Training Optimizers

Ø   System-Level Pre-Training 

Efficiency Optimization

Illustrations of efficient pre-training techniques for LLMs

Efficient Pre-Training (cont.)
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Ø    Eff icient Fine-Tuning --  reducing the costs of the LLM fine-tuning process

Efficient Pre-Training (cont.)
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Ø   Parameter-Eff icient Fine-Tuning (PEFT)

   ○  Low-Rank Adaptation (LoRA)

   ○  Adapter-based Tuning

   ○  Prefix Tuning

   ○  Prompt Tuning

Ø Memory-Efficient Fine-Tuning

Illustrations of PEFT  (a)-(d) and memory-efficient fine-tuning (e)

Efficient Pre-Training (cont.)
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Ø   Eff icient Inference -- reducing the costs of the LLMs inference process

Efficient Inference
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Ø   Algorithm-Level Inference Eff iciency Optimization

   ○  Speculative Decoding --   a decoding strategy for autoregressive language models

    ○  KV-Cache Optimization --  reducing the size of KV cache

Ø  System-Level Inference Eff iciency Optimization

- -  can also be opt imized at  the system level  under a speci f ic  hardware archi tecture

Efficient Inference (cont.)
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Ø   KV-Cache Optimization has 

emerged as a pivotal  solut ion 

to  the issue of  the 

Transformer archi tecture’s 

struggle wi th handl ing long 

texts

   ○   from the training phase, to the 

deployment phase, and finally to the 

post-training phase

An overview of the main structure of KV-Cache compression methods 

Efficient Inference (cont.)
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Ø   Eff icient Architecture 

Design -- the strategic 

opt imizat ion of  model  

archi tecture and 

computat ional  processes

  

Efficient Architecture Design
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Ø   Eff icient Attention

   ○  Sharing-based Attention

    ○  Kernelization or Low-Rank

   ○  Fixed Pattern Strategies

    ○  Learnable Pattern Strategies

   ○  Hardware-Assisted Attention

Efficient Architecture Design (cont.)
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Ø   Mixture of Experts (MoE)
   ○  MoE-based LLMs

    ○  Algorithm-Level MoE Optimization

   ○  System-Level MoE Optimization

Ø  Long Context LLMs
    ○  Positional Extrapolation and 

Interpolation

   ○  Segmentation and Sliding Window

   ○  Memory-Retrieval Augmentation

Ø    Transformer-Alternate Architectures
○  State Space Models

○  Other Sequent ia l  Models

  

Efficient Architecture Design (cont.)
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Ø    Data selection -- a fundamental technique for enhancing eff iciency

Ø    Data Selection for Eff icient Pre-Training

Ø     Data Selection for Efficient Fine-Tuning

  

Data-Centric Methods
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Ø    Prompt Engineering -- designing effect ive inputs ( i .e.,  prompts) to guide 

LLMs in generating desired outputs

  

Prompt Engineering
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Ø   Few-Shot Prompting

   ○  Demonstration Organization

-- Demonstration Selection

-- Demonstration Ordering

    ○  Template Formatting

        -- Instruction Generation

-- Multi-Step Reasoning

   

Prompt Engineering (cont.)
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Ø   Prompt Compression

- -   accelerates the processing 

of  LLM inputs through ei ther 

condensing lengthy prompt inputs 

or  learning compact prompt 

representat ions

Ø   Prompt Generation

   -- automatically creating effective 

prompts that guide the model  in 

generat ing speci f ic  and relevant 

responses   

Prompt Engineering (cont.)
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Ø   LLM frameworks can be in general grouped based on whether they support the 

tasks of training, f ine-tuning, and inference

Ø   Frameworks that support training and/or f ine-tuning aim to provide scalable, 

eff icient, and f lexible infrastructure that improves computation eff iciency, reduces 

memory footprint,  optimizes communication eff iciency, and ensures rel iabi l i ty of the 

training/f ine-tuning process

Ø Frameworks that support inference focus on optimizing inference throughput and 

reducing memory footprint and latency

LLM Frameworks
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1. What is reasoning?

144

Whatever intelliigence may be, reasoning and problem solving have traditionally been viewed as 

important subsets of it. 

Sternberg, Robert J., ed. Handbook of human intelligence. Cambridge university press, 1982.

Ø Reasoning is an critical component of language intelligence. 

Ø Language intelligence involves the ability to understand and process ideas expressed in natural 

languages 

Ø Reasoning involves a multi-step process that uses evidence, arguments, and logic to arrive at 

conclusions or make sophisticated predictions.



1. What is reasoning?

145Sun, Jiankai, et al. "A survey of reasoning with foundation models." arXiv preprint arXiv:2312.11562 (2023).

Ø Large Language Models (LLMs) have shown 

impressive results in complex reasoning tasks

Ø From traditional reasoning tasks to general-

purpose reasoning task

Ø From single-modal reasoning to multimodal 

reasoning
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2. How do LLM perform reasoning?
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A small sunflower has 3 dozen seeds and 
a large sunflower has 50% more seeds 
than a smal l  sunf lower.   How many 
sunflower seeds are there altogether?

Input

Large 
Language

Model

ØDirectly generate answers

54

Output

ØChain-of-thought (CoT) prompting

A small sunflower has 3 dozen seeds 
and a large sunflower has 50% more 
seeds than a small sunflower.  How 
many sunf lower seeds are there 
altogether? Let’s think step by step.

Input

Large 
Language

Model

A small sunflower has 3 x 12 = 36 
seeds. A large sunflower has 36 x 
0.5 = 18 more seeds. So a large 
sunflower has 36 + 18 = 54 seeds. 
Altogether, there are 36 + 54 = 90 
sunflower seeds. 

Output
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ØChain-of-thought (CoT) prompting

A small sunflower has 3 dozen seeds 
and a large sunflower has 50% more 
seeds than a small sunflower.  How 
many sunf lower seeds are there 
altogether? Let’s think step by step.

Input

Large 
Language

Model

A small sunflower has 3 x 12 = 36 
seeds. A large sunflower has 36 x 
0.5 = 18 more seeds. So a large 
sunflower has 36 + 18 = 54 seeds. 
Altogether, there are 36 + 54 = 90 
sunflower seeds. 

Output

• CoT prompts LLMs to generate a series of intermediate reasoning steps for solving a problem (telling a 

maths student to "show their working".)

• CoT deconstructs complex issues into smaller, easily understandable, and manageable sub-problems, 

systematically enabling solutions through a step-by-step approach, leading to more logical and accurate 

answers.
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Chain-of-Thoughts (Zero-Shot)

A small sunflower has 3 dozen seeds and a 
large sunflower has 50% more seeds than a 
small sunflower.  How many sunflower seeds 
are there altogether? Let’s think step by step.

A small sunflower has 3 x 12 = 36 seeds. A large 
sunflower has 50% more seeds than a small 
sunflower, which is 36 x 0.5 = 18 more seeds. So 
a large sunflower has 36 + 18 = 54 seeds. 
Altogether, there are 36 + 54 = 90 sunflower 
seeds. The answer is 90.

Output

Input

Instruction Rationale AnswerQuestionExemplars

ØTwo types of CoT: Zero-Shot and Few-shot

Ø Zero-Shot-CoT typically relies on instructions to 

facilitate the LLM in conducting step-by-step 

reasoning

Ø Rationales: intermediate processes of CoT reasoning 

(solutions, intermediate reasoning steps, relevant 

external knowledge)
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Chain-of-Thoughts (Few-Shot)

Q: A small sunflower has 3 dozen seeds 
and a large sunflower has 50% more 
seeds than a small sunflower.  How many 
sunflower seeds are there altogether?
A:

A: A small sunflower has 
3 x 12 = 36 seeds. A 
large sunflower has 50% 
more seeds than a small 
sunflower, which is 36 x 
0.5 = 18 more seeds. So 
a large sunflower has 36 
+ 18 = 54 seeds. 
Altogether, there are 36 
+ 54 = 90 sunflower 
seeds. 

The answer is 90.

Input Output

Q: There are 15 trees in the grove. Grove 
workers will plant trees in the grove today. After 
they are done, there will be 21 trees. How many 
trees did the grove workers plant today?
A: There are 15 trees originally. Then there 
were 21 trees after some more were planted. 
So there must have been 21 - 15 = 6. The 
answer is 6.

Instruction Rationale AnswerQuestionExemplars

ØTwo types of CoT: Zero-Shot and Few-shot

Ø Few-Shot-CoT: 

concatenate a set of 

exemplars with associated 

rationales with the question 

and serve as in-context 

demonstrations
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• Improved Reasoning Performance

1. CoT reduces the risk of missing 

important details 

2. CoT ensures that computational 

resources are allocated efficiently.

3. Research across various fields has 

consistently shown that CoT boosts 

performance.

ØBenefits of CoT
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ØBenefits of CoT
• Improved Reasoning Performance

• Improved Interpretability

CoT makes the reasoning processes of LLMs transparent, allowing us to follow the logical steps leading to the 

conclusion, which is invaluable for debugging and improving models. 

• Improved Controllability

CoT guides LLMs more effectively which makes it possible to refine the model's focus and correct paths in the 

reasoning process that may lead to errors. It's a powerful tool for ensuring accurate and reliable outputs.

• Improved Flexibility

CoT adapts well to various applications beyond traditional tasks and can be easily implemented in LLMs
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ØParadigm shifts of CoT

• Prompting pattern

• Reasoning format

• Application scenario
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ØParadigm shifts of CoT
n Prompting pattern

• Instruction generation

Find the optimal instructions to prompt LLM for step-by-step reasoning. 

Mainly aims to maximize LLM's zero-shot capability 

• Exemplar generation

Find the best set of input-output demonstration exemplar pairs to 

prompt LLMs for step-by-step reasoning. 

Mainly aims to maximize LLM’s few-shot capability
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ØParadigm shifts of CoT

• Instruction generation

1) Manually constructed instructions

Outperforms zero-shot LLM performances without the need 

for hand-crafted few-shot examples

Need to test various prompts to achieve the desired behavior

2) Automated generation and selection of instructions
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ØParadigm shifts of CoT
• Instruction generation

2)  Automated generation and selection of instructions

Zhou, Yongchao, et al. "Large language models are human-level prompt engineers." arXiv preprint arXiv:2211.01910 (2022).
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ØParadigm shifts of CoT

• Exemplar Generation

1) Manually exemplar generation

Exemplars are crafted by hand 

to guide the model's output 

through specific reasoning 

steps 

Manual-CoT
Zhang, Zhuosheng, et al. "Automatic chain of thought prompting in large language models.“ ICLR 2023 
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ØParadigm shifts of CoT
• Exemplar Generation

2)    Automatic exemplar generation

Auto-CoT

Zhang, Zhuosheng, et al. "Automatic chain of thought prompting in large language models.“ ICLR 2023 

Systems optimize the selection of examples to improve effectiveness
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ØParadigm shifts of CoT

• Exemplar Generation

Zhang, Zhuosheng, et al. "Automatic chain of thought prompting in large language models.“ ICLR 2023 

• LLMs tend to make mistakes on 

similar types of questions

• Too many incorrect exemplars can 

decrease the LLM's performance 

Diverse set of exemplars can mitigate 

this misleading effects! 
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ØParadigm shifts of CoT

• Prompting pattern

• Reasoning format

• Application scenario
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ØParadigm shifts of CoT
• Reasoning Format

cognitive structuresstructural information sequential
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ØParadigm shifts of CoT
• Reasoning Format

Narang, Sharan, Aakanksha Chowdhery, and Denny Zhou. "Self-Consistency Improves Chain of Thought Reasoning in Language Models.“ ICLR 2023

Improves the performance through the aggregation of results
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ØParadigm shifts of CoT
• Reasoning Format

Wang, Xuezhi, et al. "Rationale-augmented ensembles in language models." arXiv preprint arXiv:2207.00747 (2022).

Rationale-augmented ensembles: reduce the brittleness of model outputs by 

aggregating multiple rationales.

Sampling rationale in the output space consistently yields the best 
improvements in task performance
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ØParadigm shifts of CoT
• CoT verification 

Introduce verification methods to verify and amend the CoT reasoning

Weng, Yixuan, et al. "Large Language Models are Better Reasoners with Self-Verification." Findings of the Association for Computational Linguistics: EMNLP 2023.
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ØParadigm shifts of CoT
• CoT verification 

Incorporate external tools (search engines, calculators) to enhance the factual 

accuracy and logical consistency of the LLM reasoning process.

Verify-and-Edit framework CRITIC framework 

• Interacts with appropriate external tools to 
evaluate certain aspects of the answer, 

• Revising the output based on the feedback.
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ØParadigm shifts of CoT
• CoT verification 
Multi-Agent Debate (MAD)  
Introduce adversarial testing: multiple models debate to refine the reasoning 
Ensuring diverse perspectives are considered before reaching a conclusion.

Liang, Tian, et al. "Encouraging divergent thinking in large language models through multi-agent debate." arXiv preprint arXiv:2305.19118 (2023).
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ØParadigm shifts of CoT
• CoT verification 

Introduce verification methods to verify and amend the CoT reasoning

• A shift towards more dynamic and reliable CoT verification processes

• Focusing on external validations to overcome the limitations of 

heavily relying on models’ built-in capabilities, leading to errors or 

oversights in complex reasoning tasks
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ØParadigm shifts of CoT

• From single-language tasks to 

multilingual tasks

• From single-modality to 

multi-modalities

• From complex reasoning tasks 

to general-purpose tasks
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ØParadigm shifts of CoT
• From Single Language to Multilingual Scenarios.

Integrating multilingual examples
English rationales lead to better results

Multilingual Grade School Math (MGSM) benchmark

Aligns different language representations using 
a step-by-step English translation

Cross-lingual prompting
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ØParadigm shifts of CoT
• From Text Modality to Multimodalities.
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ØParadigm shifts of CoT
• From Text Modality to Multimodalities.

Multimodal-CoT incorporates language (text) and vision (images) modalities into a two-
stage framework that separates rationale generation and answer inference

Zhang, Zhuosheng, et al. "Multimodal chain-of-thought reasoning in language models." arXiv preprint arXiv:2302.00923 (2023).

Use single-head attention network to fuse different modality representations
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• From Text Modality to Multimodalities.
Introducing more reliable input results in more convincing reasoning process

Zhang, Zhuosheng, et al. "Multimodal chain-of-thought reasoning in language models." arXiv preprint arXiv:2302.00923 (2023).

q Case studies: 50 error cases
l Imperfect training data: when the vision input is missing
l Generate hallucinated rationales that mislead the answer inference (64%)
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• From Text Modality to Multimodalities.
Introducing more reliable input results in more convincing reasoning process
More accurate perception, less hallucinations during the reasoning process

Zhang, Zhuosheng, et al. "Multimodal chain-of-thought reasoning in language models." arXiv preprint arXiv:2302.00923 (2023).

Many to one 
mapping

One to one 
mapping
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ØParadigm shifts of CoT
• From Text Modality to Multimodalities.

Yao, Yao, Zuchao Li, and Hai Zhao. "Beyond chain-of-thought, effective graph-of-thought reasoning in large language models." arXiv preprint arXiv:2305.16582 (2023).

• Human thought processes are often non-linear, rather than simply sequential 
Chain-of-Thought

• Graph-of-Thought models the non-sequential nature of human thinking 
within LLMs and structures the reasoning process as a graph  
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ØParadigm shifts of CoT
• From Text Modality to Multimodalities.

Graph-of-Thought uses open information extraction systems to extract subject-
verb-object triplets for thought graph construction 

Yao, Yao, Zuchao Li, and Hai Zhao. "Beyond chain-of-thought, effective graph-of-thought reasoning in large language models." arXiv preprint arXiv:2305.16582 (2023).

Graph-of-Thought employs thought graphs to simulate human deductive reasoning, 
thereby modeling humans’ ability for leaps of thought.



2. How do LLM perform reasoning?

176

ØParadigm shifts of CoT
• From Text Modality to Multimodalities.

GoT captures the non-sequential human thinking process and allows for a more 
realistic modeling of thought processes.

Yao, Yao, Zuchao Li, and Hai Zhao. "Beyond chain-of-thought, effective graph-of-thought reasoning in large language models." arXiv preprint arXiv:2305.16582 (2023).
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ØParadigm shifts of CoT
• From Text Modality to Multimodalities.
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ØParadigm shifts of CoT
• From Text Modality to Multimodalities.

• Generates captions for 
visual inputs 

• Employs a recursive and 
novelty-driven method to 
fill in multimodal details

• Maintains consistency 
across and improves the 
interpretability and logical 
coherence of the reasoning 
process.

More dynamic and versatile CoT applications, allowing models to better simulate 
human-like reasoning across different modalities and tasks.

Rose, Daniel, et al. "Visual chain of thought: Bridging logical gaps with multimodal infillings." arXiv preprint arXiv:2305.02317 (2023).
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ØParadigm shifts of CoT
• From Complex Reasoning Tasks to General-Purpose Tasks

Summary CoT empowers LLMs to extract and integrate detailed element (character, time, place, 
event, etc.) from source documents for in-depth and comprehensive summaries

Wang, Yiming, Zhuosheng Zhang, and Rui Wang. "Element-aware summarization with large language models: Expert-aligned evaluation and chain-of-thought method." arXiv preprint 
arXiv:2305.13412 (2023).
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ØParadigm shifts of CoT
• From Complex Reasoning Tasks to General-Purpose Tasks

Self-Prompting 

enhances the models’ 

open-domain question 

answering ability to 

generate contextually 

relevant answers 

through dynamically 

tailored prompts

Li, Junlong, Zhuosheng Zhang, and Hai Zhao. "Self-prompting large language models for zero-shot open-domain qa." arXiv preprint arXiv:2212.08635 (2022).

1. Prompt LLM to automatically generates a pseudo open-domain question answering dataset (QA 
pairs with context paragraphs and explanations)

2. Dynamically selects a few examples from a pool using a clustering-based retrieval method as 
context demonstrations
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ØParadigm shifts of CoT
• From Complex Reasoning Tasks to General-Purpose Tasks

Bran, Andres M., et al. "ChemCrow: Augmenting large-language models with chemistry tools." arXiv preprint arXiv:2304.05376 (2023).

ChemCrow

1. Using a variety of chemistry-
related tools (reaction, molecule, 
safety, search, and standard tools). 

2. The LLM is provided with a list of 
tool names, descriptions of their 
utility, and details about the 
expected input/output.

3. LLM performs an automatic, 
iterative CoT process, deciding on 
its path and choice of tools.
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ØWhen CoT Works?

Engineering perspective

• An LLM is used

• The task is challenging and requires multi-step 

reasoning

• the performance of direct prompting does not 

increase dramatically while scaling the model size.

Theoretical perspective

• LLM comprises knowledge pieces with strong mutual 

connections that are related to the target problem

• Rationales are relevant to the query with correct the 

reasoning steps order

• Introduce reasoning materials and necessary 

knowledge for LLMs in the training corpus
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ØWhy CoT Works?

Empirically

CoT helps compel the model to conduct reasoning 

rather than teaching it how to accomplish reasoning
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ØWhy CoT Works?

Theoretically

CoT helps identify the atomic pieces of 

knowledge used for reasoning and

bridge the relationship between the pieces 

with intermediate reasoning steps.
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• CoT breaks down complex issues or tasks into sub-problems, enabling solutions through a step-by-step 

approach, leading to more logical and accurate response.

• Leveraging the reasoning capabilities developed during pre-training, CoT identifies atomic knowledge 

components essential for reasoning processes and seamlessly integrates their relationships for coherent 

reasoning steps.

•  CoT reasoning is a presentative emergent ability of LLMs. Reasoning ability emerges in language models at a 

certain scale, such as models with over 100 billion parameters.

• CoT techniques have experienced substantial paradigm shifts, embracing alterations in prompting patterns, 

reasoning formats, and application scenarios 

From CoT to Agent !
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Multimodal Reasoning

191https://www.astonzhang.com/img/mm-cot-idea.png
Gemini Team Google. Gemini: A Family of Highly Capable Multimodal Models. arXiv:2312.11805.

• A picture is worth a thousand words.
• Multimodal information can serve as 

grounding information in the input side for 
reasoning

Creative tasks: prompt → infer the intent → reason with 
commonsense knowledge → multimodal outcomes   
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Yue, X., Ni, Y., Zhang, K., Zheng, T., Liu, R., Zhang, G., Stevens, S., Jiang, D., Ren, W., Sun, Y. and Wei, C. Mmmu: A massive multi-discipline multimodal understanding and reasoning benchmark for expert agi. CVPR 2024.

q Concept: a process of  deriving high-level conclusions from multiple modalities, possibly via 
multiple logical steps based on atomic evidences (happens on either input or output sides, or both)

Think about supporting facts → infer the logical steps 
→ predict the final answer



How to perform Multimodal Reasoning? 

193Wu, S., Fei, H., Qu, L., Ji, W. and Chua, T.S., 2023. Next-gpt: Any-to-any multimodal llm. ICMLR 2024.
Rust, P., Lotz, J.F., Bugliarello, E., Salesky, E., de Lhoneux, M. and Elliott, D., 2023, September. Language Modelling with Pixels. ICLR 2023.
Rohan Bavishi, Erich Elsen, Curtis Hawthorne, Maxwell Nye, Augustus Odena, Arushi Somani, and Sagnak Ta¸sırlar. Introducing our multimodal models: fuyu-8b, 2023. https://www.adept.ai/blog/fuyu-8b.

q Three foundational multimodal architectures: 
(a) language-centered method; (b) image-centered method; (c) unified method



Model Architecture

194Wu, S., Fei, H., Qu, L., Ji, W. and Chua, T.S., 2023. Next-gpt: Any-to-any multimodal llm. ICMLR 2024.
Rust, P., Lotz, J.F., Bugliarello, E., Salesky, E., de Lhoneux, M. and Elliott, D. Language Modelling with Pixels. ICLR 2023.
Rohan Bavishi, Erich Elsen, Curtis Hawthorne, Maxwell Nye, Augustus Odena, Arushi Somani, and Sagnak Ta¸sırlar. Introducing our multimodal models: fuyu-8b, 2023. https://www.adept.ai/blog/fuyu-8b.

q Is language-centered model the future?
l (In)efficiency when Involving more diverse modalities such as auditory, tactile, and brain signals
l (Im)balance of data scales, computation efficiency and the scalability of models 

Pros Cons

Simple and effective to 
align different modalities

Need already pre-trained 
encoders as the basis

Can overcome the 
vocabulary bottleneck

Need to transform each 
modality into pixels 
(suffer from data 
efficiency)

Simple architecture 
Achieved competitive 
performance like 
language-centered 
methods

Suffer from imbalanced 
data between modalities 
during the pre-training



In-Context Learning

195
Sun, Q., Cui, Y., Zhang, X., Zhang, F., Yu, Q., Luo, Z., Wang, Y., Rao, Y., Liu, J., Huang, T. and Wang, X. Generative multimodal models are in-context learners. CVPR 2024.

q Each image in the multimodal sequence is tokenized into 
embeddings via a visual encoder, and then interleaved with 
text tokens for autoregressive modeling.

q Leveraging few-shot Prompting for diverse reasoning tasks
q MLLMs have got the strong ability of understanding and 

leveraging the context for reasoning.

Current MLLMs are generally able to handle the 
interleaved inputs, to generate more effective response



Evolution of Multimodal Reasoning

196
VITRON: A Unified Pixel-level Vision LLM for Understanding, Generating, Segmenting, Editing. https://vitron-llm.github.io/

Task 1 Task 2 Task n

Model 1 Model 2 Model n

Task 1 Task 2 Task n

Unified Model

q From task-specific to centralized paradigms

train specific models for each task (image 
caption, question answering, etc.)

MLLM generalize to a wide range of tasks 
as a unified model



Evolution of Multimodal Reasoning
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Wei, J., Tan, C., Gao, Z., Sun, L., Li, S., Yu, B., Guo, R. and Li, S.Z., 2023. Enhancing Human-like Multi-Modal Reasoning: A New Challenging Dataset and Comprehensive Framework. arXiv preprint arXiv:2307.12626.

q From (implicit) single-step prediction to (explicit) multi-step reasoning
q Improved Interpretability: offer an interpretable 

glimpse into the decision-making process

q Improved Controllability: interfere the reasoning 
process, e.g., adding complementary information, 
verifying and correcting mistakes

q Improved Flexibility: allow interactive 
communications between different models and 
tools
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Brain in a Vat

Ma, Y., Zhang, C. and Zhu, S.C., 2023. Brain in a vat: On missing pieces towards artificial general intelligence in large language models. arXiv preprint arXiv:2307.03762.
Xi, Z., Chen, W., Guo, X., He, W., Ding, Y., Hong, B., Zhang, M., Wang, J., Jin, S., Zhou, E. and Zheng, R., 2023. The rise and potential of large language model based agents: A survey. arXiv preprint arXiv:2309.07864.

q From content-based reasoning to behavior control (w/ multimodalities)
q “Those who know but do not act simply do not yet know”

limited to content-based reasoning, 
do not interact with the real world 

build autonomous agents to interact with the environments , 
solve complex tasks in the real world !

multimodal reasoning 
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q (M)LLM Agents: follow language instructions and execute actions in environments, possibly use tools

q Features: General, Autonomous, Adaptive, Evolutionary, Socialized

Text

Vision

Audio

Video

(M)
LLM

    Device Control
（OS、APPs）

Tools

 Scientific 
Discovery

Multi-Agent 
Collaboration

Physical World

Virtual World

Software 
Development
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201Ma, Y., Zhang, C. and Zhu, S.C., 2023. Brain in a vat: On missing pieces towards artificial general intelligence in large language models. arXiv preprint arXiv:2307.03762.
Xi, Z., Chen, W., Guo, X., He, W., Ding, Y., Hong, B., Zhang, M., Wang, J., Jin, S., Zhou, E. and Zheng, R., 2023. The rise and potential of large language model based agents: A survey. arXiv preprint arXiv:2309.07864.

Control: OS and Applications

Control: Embodied Systems

Research: Organic Synthesis

Research: Medical Assistance

Programming：Code Generation

Interaction: Multi-Agent Collaboration
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Autonomous Agents Communicative Agents

AITW

WebArena
https://webarena.dev

https://github.com/google-research/google-
research/tree/master/android_in_the_wild

Auto-UI
https://github.com/cooelf/Auto-UI

Generative Agents
https://github.com/joonspk-
research/generative_agents

VOYAGER
https://voyager.minedojo.org/

Action Transformer
https://www.adept.ai/blog/act-1

ChatDev
https://github.com/OpenBMB/ChatDev

CAMEL
https://github.com/camel-ai/camel

More: AutoGPT, BabyAGI, Meta-GPT, AgentGPT

solve complicated tasks autonomously
personalized and socialized agents with human 
behaviors (communicate, collaborate and debate)
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Autonomous Agents: mainly task automation

Mobile Device Automation Webpage Automation Application Automation

WebArena Meta-GUI ACT-1

Sun, Liangtai, et al. "META-GUI: Towards Multi-modal Conversational Agents on Mobile GUI." EMNLP 2022.
Zhou, Shuyan, et al. "Webarena: A realistic web environment for building autonomous agents." arXiv preprint arXiv:2307.13854 (2023).
https://www.adept.ai/blog/act-1
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Communicative Agents: personalized, socialized, interactive

Agents-Agents Agents-Human

Park, Joon Sung, et al. "Generative agents: Interactive simulacra of human behavior." arXiv preprint arXiv:2304.03442 (2023).
Lin, Jessy, et al. "Decision-Oriented Dialogue for Human-AI Collaboration." arXiv preprint arXiv:2305.20076 (2023).
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Webpage Plan

OS

Virtual Env.

APP

Rule Set

API Interface 

Interpreter

Physical Device

Execute / Call

Memory
(long/short)

State

Action

(M)LLM

Environment

Tool

Interaction

DecisionControl

Planning / Problem Decomposition

Decision Making

Task Instruction Foundation

Obs

Act

Workflow

q Perception in the complex 
environment

q Long-context Modeling with 
consistency

q Perception

q Planning & Decision Making

q Action (w/ Tool Use)

q Interaction

q Memory

q Multi-Agent Collaboration

q Overview of a single agent system Research Lines
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q CoT has acted as a catalyst in the evolution of LLM-empowered agents

l Specifically augmenting agent capabilities in perception, memory, and reasoning

Zhang, Z., Yao, Y., Zhang, A., Tang, X., Ma, X., He, Z., Wang, Y., Gerstein, M., Wang, R., Liu, G. and Zhao, H., 2023. Igniting Language Intelligence: The Hitchhiker's Guide From Chain-of-Thought Reasoning to Language Agents. 
arXiv preprint arXiv:2311.11797.

Perception:
Improves the understanding of the environment 
or the context by prompting the agent to 
interpret the perception step by step. 

Memory:
An agent is commonly equipped with both long-term and 
short-term memory. 
CoT-format memory is used as context for making plans 
and deciding the actions.

Reasoning:
• CoT helps combine the 

thought, action, and 
observation as a 
reasoning trajectory. 

• CoT allows the LLM to 
interface with external 
sources (knowledge 
bases, environments, etc.)
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q Auto-GUI：Multimodal Autonomous Agents for GUI control
l Assist users in completing tasks in distinct environments such as operation systems, specific applications, and web browsers

l Imitate human clicking, scrolling, and typing actions, and operate directly with the GUI

Zhuosheng Zhang, Aston Zhang. You Only Look at Screens: Multimodal Chain-of-Action Agents. Findings of ACL 2024.
Xinbei Ma, Zhuosheng Zhang, Hai Zhao. Comprehensive Cognitive LLM Agent for Smartphone GUI Automation. Findings of ACL 2024.
https://machinelearning.apple.com/research/ferret..



Paradigms of GUI Agents
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Zhuosheng Zhang, Aston Zhang. You Only Look at Screens: Multimodal Chain-of-Action Agents. Findings of ACL 2024.

Traditional LM-based agents Auto-GUI
Directly interacts with the GUI interfaceRely on external tools and application-specific APIs to parse 

the environment into textual elements

Inference inefficiency and error propagation risks
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q Chain-of-Action: a series of intermediate previous action histories (input) and future action plans (output)

q Key idea: leverage intermediate action histories and future action plans. Both of them imitate the memory and 
planning mechanisms of the agent, so as to help the agent decide what action to execute in each step. 

Zhuosheng Zhang, Aston Zhang. You Only Look at Screens: Multimodal Chain-of-Action Agents. Findings of ACL 2024.
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q Multimodal Agent: BLIP2 + FLAN-Alpaca

q A unified multimodal model out of first principles thinking can serve as a strong autonomous agent

l can be adapted to different scenarios without the need to train specific models for each task

l does not need additional annotations (screen parsing) and is easy to use

q Coverage: 30K unique instructions, 350+ Apps and websites

q Action Type Accuracy: 90%+, Action Success Rate: 74%+

Zhuosheng Zhang, Aston Zhang. You Only Look at Screens: Multimodal Chain-of-Action Agents. Findings of ACL 2024.
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q The bottleneck seems to be the multimodal perception, misleading the reasoning process

l Changing vision encoders influences the performance dramatically

l GUI involves comprehensive elements (interleaved, icons, texts, boxes)

q Scaling does not always improve performance

Zhuosheng Zhang, Aston Zhang. You Only Look at Screens: Multimodal Chain-of-Action Agents. Findings of ACL 2024.
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q Category Accuracy: the major challenges lie within the click region and scroll direction predictions

l The model tends to click a wrong place or scroll in a wrong direction

q Challenge in “really” understanding the GUI layouts, e.g., relationship between GUI elements

Zhuosheng Zhang, Aston Zhang. You Only Look at Screens: Multimodal Chain-of-Action Agents. Findings of ACL 2024.
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Evolutionary Reasoning
• Active explore and evolve 

from environments
• Learn from (un)successful 

attempts

Interactive Reasoning
• Human-in-the-loop 

interference
• Error identification and 

correction abilities

Reasoning Alignment
• Align both content safety, 

and behavior safety
• Decide the action trajectory 

with foresights

q Multimodal reasoning drives smart MLLMs 

l More broader scenarios (physical and virtual worlds)

l More comprehensive scenarios (evolutionary, interactive)



Challenges - Safety

215

Diverse attacks: from specific domain to comprehensive behavior hijacking

   Prioritizing Safeguarding Over Autonomy: Risks of LLM Agents for Science. arXiv preprint arXiv:2402.04247.
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q Are LLM agents aware of safety risks in real-world applications? Let's find out with R-Judge!

q 569 records of agent interaction, encompassing 27 key risk scenarios among 7 application categories and 10 risk 
types.

R-Judge: Benchmarking Safety Risk Awareness for LLM Agents. https://web3.arxiv.org/abs/2401.10019.

Assess whether LLMs are able to identify safety risks of agent operations



Challenges - Safety

217

q GPT-4 ranks first and is also the only model scoring higher than random in the safety judgment test

l Scenario Simulation: Fail to retrieve relevant knowledge and reason in specific scenarios

l Understanding Adaptability: Unable to comprehend risks in specific conditions

l Safety Alignment: Deviation of safety alignment with humans in practical scenarios

R-Judge: Benchmarking Safety Risk Awareness for LLM Agents. https://web3.arxiv.org/abs/2401.10019.
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q The risk awareness of LLMs is not comparable with humans and demands general capabilities 
involving knowledge and reasoning. 

q The safety of agents remains an open challenge. More attentions should be paid for (multimodal) 
language agents.

R-Judge: Benchmarking Safety Risk Awareness for LLM Agents. https://web3.arxiv.org/abs/2401.10019.
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q Basics of Multimodal Reasoning

l Concept: derive high-level conclusions from multiple modalities, possibly via multiple logical steps 
based on atomic evidences

l Developments: (a) From task-specific to centralized paradigms; (b) From single-step prediction to 
multi-step reasoning

l Popular Approaches: (a) In-Context Learning: (b) Multimodal Chain-of-Thought

q Towards Multimodal LLM Agents

l Taxonomy: Autonomous Agents and Communicative Agents

l Technical Components: Foundation (multimodality & long-context modeling); (b) Workflow (plan, 
act, memory, feedback)

q Challenges

l Evolutionary Reasoning, Interactive Reasoning, Reasoning Alignment
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